Interview-DataBase

本文对数据库以及MySQL的基础知识做了一些梳理和总结

数据库三范式

第一范式

在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。

  • 所谓第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。
  • 如果出现重复的属性,就可能需要定义一个新的实体,新的实体由重复的属性构成,新实体与原实体之间为一对多关系。
  • 在第一范式(1NF)中表的每一行只包含一个实例的信息。
  • 简而言之,第一范式就是无重复的列。

不符合第一范式的实例:

img

存在问题:

最后一条记录和第一条重复(不唯一,没有主键)
联系方式字段可以再分,不是原子性的

img

关于第一范式,每一行必须唯一,也就是每个表必须有主键,这是数据库设计的最基本要求,主要采用数值型或定长字符串表示,关于列不可再分,应该根据具体的情况来决定。如联系方式,为了开发上的便利可能就采用一个字段。

第二范式

第二范式是建立在第一范式基础上的,另外要求所有非主键字段完全依赖主键,不能产生部分依赖

实例:

img

确定主键:

img

以上虽然确定了主键,但此表会出现大量的冗余,主要涉及到的冗余字段为“学生姓名”和“教师姓名”,出现冗余的原因在于,学生姓名部分依赖了主键的一个字段学生编号,而没有依赖教师编号,而教师姓名部分依赖了主键的一个字段教师编号,这就是第二范式部分依赖。

解决:

img

如果一个表是单一主键,那么它就是复合第二范式,部分依赖和主键有关系

以上是典型的“多对多”设计

第三范式

建立在第二范式基础上的,非主键字段不能传递依赖于主键字段(不要产生传递依赖)。

第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。

img

上表中,班级名称字段存在冗余,因为班级名称字段没有直接依赖于主键,班级名称字段依赖于班级编号,班级编号依赖于学生编号,这就是传递依赖,解决的办法就是将冗余字段单独拿出来建立表:

img

以上设计是典型的一对多的设计,一存储在一张表中,多存储在一张表中,在多的那张表中添加外键指向一的一方

执行一条SQL语句

基础架构

下图是 MySQL 的一个简要架构图,从下图你可以很清晰的看到客户端的一条 SQL 语句在 MySQL 内部是如何执行的。

img

从上图可以看出, MySQL 主要由下面几部分构成:

  • 连接器: 身份认证和权限相关(登录 MySQL 的时候)。
  • 查询缓存: 执行查询语句的时候,会先查询缓存(MySQL 8.0 版本后移除,因为这个功能不太实用)。
  • 分析器: 没有命中缓存的话,SQL 语句就会经过分析器,分析器说白了就是要先看你的 SQL 语句要干嘛,再检查你的 SQL 语句语法是否正确。
  • 优化器: 按照 MySQL 认为最优的方案去执行。
  • 执行器: 执行语句,然后从存储引擎返回数据。 执行语句之前会先判断是否有权限,如果没有权限的话,就会报错。
  • 插件式存储引擎 : 主要负责数据的存储和读取,采用的是插件式架构,支持 InnoDB、MyISAM、Memory 等多种存储引擎。

数据库连接池

什么是连接池

数据库连接池负责分配、管理和释放数据库连接,它允许应用程序重复使用一个现有的数据库连接,而不是再重新建立一个。

为什么要使用连接池

数据库连接是一种关键的有限的昂贵的资源,这一点在多用户的网页应用程序中体现得尤为突出。 一个数据库连接对象均对应一个物理数据库连接,每次操作都打开一个物理连接,使用完都关闭连接,这样造成系统的 性能低下。
数据库连接池的解决方案是在应用程序启动时建立足够的数据库连接,并讲这些连接组成一个连接池(简单说:在一个“池”里放了好多半成品的数据库联接对象),由应用程序动态地对池中的连接进行申请、使用和释放。对于多于连接池中连接数的并发请求,应该在请求队列中排队等待。并且应用程序可以根据池中连接的使用率,动态增加或减少池中的连接数。
连接池技术尽可能多地重用了消耗内存地资源,大大节省了内存,提高了服务器地服务效率,能够支持更多的客户服务。通过使用连接池,将大大提高程序运行效率,同时,我们可以通过其自身的管理机制来监视数据库连接的数量、使用情况等。

常用连接池参数

  1. maxActive 连接池支持的最大连接数,这里取值为20,表示同时最多有20个数据库连接。一般把maxActive设置成可能的并发量就行了设 0 为没有限制。

  2. maxIdle 连接池中最多可空闲maxIdle个连接 ,这里取值为20,表示即使没有数据库连接时依然可以保持20空闲的连接,而不被清除,随时处于待命状态。设 0 为没有限制。

  3. minIdle 连接池中最小空闲连接数,当连接数少于此值时,连接池会创建连接来补充到该值的数量

  4. initialSize 初始化连接数目

  5. maxWait 连接池中连接用完时,新的请求等待时间,毫秒,这里取值-1,表示无限等待,直到超时为止,也可取值9000,表示9秒后超时。超过时间会出错误信息

  6. removeAbandoned 是否清除已经超过“removeAbandonedTimout”设置的无效连接。如果值为“true”则超过“removeAbandonedTimout”设置的无效连接将会被清除。设置此属性可以从那些没有合适关闭连接的程序中恢复数据库的连接。

  7. removeAbandonedTimeout 活动连接的最大空闲时间,单位为秒 超过此时间的连接会被释放到连接池中,针对未被close的活动连接

  8. minEvictableIdleTimeMillis 连接池中连接可空闲的时间,单位为毫秒 针对连接池中的连接对象

  9. timeBetweenEvictionRunsMillis / minEvictableIdleTimeMillis 每timeBetweenEvictionRunsMillis毫秒秒检查一次连接池中空闲的连接,把空闲时间超过minEvictableIdleTimeMillis毫秒的连接断开,直到连接池中的连接数到minIdle为止.

MySQL索引详解

何为索引?有什么作用?

索引是一种用于快速查询和检索数据的数据结构。常见的索引结构有: B 树, B+树和 Hash。

索引的作用就相当于书的目录。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。

索引的优缺点

优点

  • 使用索引可以大大加快 数据的检索速度(大大减少检索的数据量), 这也是创建索引的最主要的原因。
  • 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

缺点

  • 创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
  • 索引需要使用物理文件存储,也会耗费一定空间。

但是,使用索引一定能提高查询性能吗?

大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。

索引的底层数据结构

Hash表

哈希表是键值对的集合,通过键(key)即可快速取出对应的值(value),因此哈希表可以快速检索数据(接近 O(1))。

为何能够通过 key 快速取出 value呢? 原因在于 哈希算法(也叫散列算法)。通过哈希算法,我们可以快速找到 key 对应的 index,找到了 index 也就找到了对应的 value。

1
2
hash = hashfunc(key)
index = hash % array_size

img

但是!哈希算法有个 Hash 冲突 问题,也就是说多个不同的 key 最后得到的 index 相同。通常情况下,我们常用的解决办法是 链地址法。链地址法就是将哈希冲突数据存放在链表中。就比如 JDK1.8 之前 HashMap 就是通过链地址法来解决哈希冲突的。不过,JDK1.8 以后HashMap为了减少链表过长的时候搜索时间过长引入了红黑树。

img

为了减少 Hash 冲突的发生,一个好的哈希函数应该“均匀地”将数据分布在整个可能的哈希值集合中。

既然哈希表这么快,为什么MySQL 没有使用其作为索引的数据结构呢?

1.Hash 冲突问题 :我们上面也提到过Hash 冲突了,不过对于数据库来说这还不算最大的缺点。

2.Hash 索引不支持顺序和范围查询(Hash 索引不支持顺序和范围查询是它最大的缺点: 假如我们要对表中的数据进行排序或者进行范围查询,那 Hash 索引可就不行了。

试想一种情况:

1
SELECT * FROM tb1 WHERE id < 500;

在这种范围查询中,优势非常大,直接遍历比 500 小的叶子节点就够了。而 Hash 索引是根据 hash 算法来定位的,难不成还要把 1 - 499 的数据,每个都进行一次 hash 计算来定位吗?这就是 Hash 最大的缺点了。

B 树& B+树

参考文章

B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced (平衡)的意思。

目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。

B 树& B+树两者有何异同呢?

  • B 树的所有节点既存放键(key) 也存放 数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
  • B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
  • B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。

在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样。(下面的内容整理自《Java 工程师修炼之道》)

MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引”。

InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(或聚集索引)”,而其余的索引都作为辅助索引,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

计算一棵B+树的存储数据量

首先明确innodb引擎中默认的最小储存单元——页(一页16KB)

由于B+树非叶节点中存储的数据结构中每个包含主键的大小+指针(指向叶子结点)的大小(一般为8B+6B),因此每一个页中能存放16KB/14B=1170个单元。

叶子结点的记录数为(假设一行数据大小为1k)16KB/1KB,因此每个叶子结点能存储16行数据。

从而:

  • 一棵高度为2的B+树,可以存储1170*16条记录
  • 告诉为3的B+树可以存储 1170*1170*16条记录

索引类型

**主键索引(Primary Key)**(也为聚集索引,即索引结构和数据一起存放)

数据表的主键列使用的就是主键索引。

一张数据表有只能有一个主键,并且主键不能为 null,不能重复。

在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引且不允许存在null值的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。

img

**二级索引(辅助索引)**(非聚集索引,和数据分开放)

二级索引又称为辅助索引,是因为二级索引的叶子节点存储的数据是主键。也就是说,通过二级索引,可以定位主键的位置。

唯一索引,普通索引,前缀索引等索引属于二级索引。

  1. 唯一索引(Unique Key) :唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
  2. 普通索引(Index) :普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。
  3. 前缀索引(Prefix) :前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小, 因为只取前几个字符。
  4. 全文索引(Full Text) :全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。

二级索引:(注意原来存放data的位置变成了主键的查找)

img

覆盖索引

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。我们知道在 InnoDB 存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!

覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。

如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。

再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引, 那么直接根据这个索引就可以查到数据,也无需回表。

覆盖索引img

联合索引

使用表中的多个字段创建索引,就是 联合索引,也叫 组合索引复合索引

最左前缀匹配原则

最左前缀匹配原则指的是,在使用联合索引时,MySQL 会根据联合索引中的字段顺序,从左到右依次到查询条件中去匹配,如果查询条件中存在与联合索引中最左侧字段相匹配的字段,则就会使用该字段过滤一批数据,直至联合索引中全部字段匹配完成,或者在执行过程中遇到范围查询,如 >*<between* 和 以%开头的like查询 等条件,才会停止匹配。

所以,我们在使用联合索引时,可以将区分度高的字段放在最左边,这也可以过滤更多数据。

索引失效的场景

  1. or语句前后没有同时使用索引。当or左右查询字段只有一个是索引,该索引失效,只有当or左右查询字段均为索引时,才会生效;
  2. 复合索引未用左列字段,即不是使用第一列索引,索引失效;
  3. like以%开头,当like前缀没有%,后缀有%时,索引有效;
  4. 需要类型转换;
  5. where中索引列有运算,或者索引列使用了函数;;
  6. where中在索引字段上使用not,<>,!=。(不等于操作符是永远不会用到索引的,因此对它的处理只会产生全表扫描。key<>0 改为 key>0 or key<0。)不等于操作符是永远不会用到索引的,因此对它的处理只会产生全表扫描。优化方法:key<>0 改为 key>0 or key<0。)
  7. 如果mysql觉得全表扫描更快时(数据少);
  8. 在索引列上使用 IS NULL 或 IS NOT NULL操作。(索引是不索引空值的,所以这样的操作不能使用索引,可以用其他的办法处理,例如:数字类型,判断大于0,字符串类型设置一个默认值,判断是否等于默认值即可。)

创建索引的注意事项

1.选择合适的字段创建索引:

  • 不为 NULL 的字段 :索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0,1,true,false 这样语义较为清晰的短值或短字符作为替代。
  • 被频繁查询的字段 :我们创建索引的字段应该是查询操作非常频繁的字段。
  • 被作为条件查询的字段 :被作为 WHERE 条件查询的字段,应该被考虑建立索引。
  • 频繁需要排序的字段 :索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
  • 被经常频繁用于连接的字段 :经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。

2.被频繁更新的字段应该慎重建立索引。

虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。

3.尽可能的考虑建立联合索引而不是单列索引。

因为索引是需要占用磁盘空间的,可以简单理解为每个索引都对应着一颗 B+树。如果一个表的字段过多,索引过多,那么当这个表的数据达到一个体量后,索引占用的空间也是很多的,且修改索引时,耗费的时间也是较多的。如果是联合索引,多个字段在一个索引上,那么将会节约很大磁盘空间,且修改数据的操作效率也会提升。

4.注意避免冗余索引

冗余索引指的是索引的功能相同,能够命中索引(a, b)就肯定能命中索引(a) ,那么索引(a)就是冗余索引。如(name,city )和(name )这两个索引就是冗余索引,能够命中前者的查询肯定是能够命中后者的 在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。

5.考虑在字符串类型的字段上使用前缀索引代替普通索引。

前缀索引仅限于字符串类型,较普通索引会占用更小的空间,所以可以考虑使用前缀索引带替普通索引。

事务

简单来说,数据库事务可以保证多个对数据库的操作(也就是 SQL 语句)构成一个逻辑上的整体。构成这个逻辑上的整体的这些数据库操作遵循:要么全部执行成功,要么全部不执行

1
2
3
4
5
6
# 开启一个事务
START TRANSACTION;
# 多条 SQL 语句
SQL1,SQL2...
## 提交事务
COMMIT;Copy to clipboardErrorCopied

数据库事务示意图

数据库四大特性(ACID)

  • 原子性:事务包含的所有数据库操作要么全部成功,要不全部失败回滚
  • 一致性:(与其他三个属于数据库本身的特性不同,一致性属于应用层的特性)一个事务执行之前和执行之后都必须处于一致性状态。拿转账来说,假设用户A和用户B两者的钱加起来一共是5000,那么不管A和B之间如何转账,转几次账,事务结束后两个用户的钱相加起来应该还得是5000,这就是事务的一致性。
  • 隔离性:一个事务未提交的业务结果是否对于其它事务可见。级别一般有:read_uncommit,read_commit,read_repeatable,Serializable 串行化访问。
  • 持久性:一个事务一旦被提交了,那么对数据库中数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作

这里要额外补充一点:只有保证了事务的持久性、原子性、隔离性之后,一致性才能得到保障。也就是说 A、I、D 是手段,C 是目的!

怎么保证原子性?

利用Innodb的undo log。
undo log名为回滚日志,是实现原子性的关键,当事务回滚时能够撤销所有已经成功执行的sql语句,他需要记录你要回滚的相应日志信息。

例如

1、当你delete一条数据的时候,就需要记录这条数据的信息,回滚的时候,insert这条旧数据

2、当你update一条数据的时候,就需要记录之前的旧值,回滚的时候,根据旧值执行update操作

3、当年insert一条数据的时候,就需要这条记录的主键,回滚的时候,根据主键执行delete操作

undo log记录了这些回滚需要的信息,当事务执行失败或调用了rollback,导致事务需要回滚,便可以利用undo log中的信息将数据回滚到修改之前的样子。

怎么保证持久性

利用Innodb的redo log。
正如之前说的,Mysql是先把磁盘上的数据加载到内存中,在内存中对数据进行修改,再刷回磁盘上。如果此时突然宕机,内存中的数据就会丢失。 怎么解决这个问题? 简单啊,事务提交前直接把数据写入磁盘就行啊。 这么做有什么问题?

  • 只修改一个页面里的一个字节,就要将整个页面刷入磁盘,太浪费资源了。毕竟一个页面16kb大小,你只改其中一点点东西,就要将16kb的内容刷入磁盘,听着也不合理。
  • 毕竟一个事务里的SQL可能牵涉到多个数据页的修改,而这些数据页可能不是相邻的,也就是属于随机IO。显然操作随机IO,速度会比较慢。

于是,决定采用redo log解决上面的问题。当做数据修改的时候,不仅在内存中操作,还会在redo log中记录这次操作。当事务提交的时候,会将redo log日志进行刷盘(redo log一部分在内存中,一部分在磁盘上)。当数据库宕机重启的时候,会将redo log中的内容恢复到数据库中,再根据undo log和binlog内容决定回滚数据还是提交数据

怎么保证隔离性

利用的是锁和MVCC机制(即多版本并发控制(Multi Version Concurrency Control),一个行记录数据有多个版本对快照数据,这些快照数据在undo log中)

事务隔离级别

注意MySQL 的 InnoDB 引擎才支持事务

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交) : 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读(通常针对更新UPDATE操作,前后多次读取的数据内容不一致)。
  • READ-COMMITTED(读取已提交) : 允许读取并发事务已经提交的数据,可以阻止脏读(读未提交,读到了并不一定最终存在的数据),但是幻读或不可重复读仍有可能发生。
  • REPEATABLE-READ(可重复读) : 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读(针对插入操作,前后多次读取,数据总量不一致)仍有可能发生(不过在MySQL中可以在这一级别解决幻读:通过间隙锁,控制其他事务的插入操作被阻塞直到当前事务提交完成)。
  • SERIALIZABLE(可串行化) : 最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)。我们可以通过SELECT @@tx_isolation;命令来查看,MySQL 8.0 该命令改为SELECT @@transaction_isolation;

并发事务带来了哪些问题?

在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对同一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。

  • 脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
  • 丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务 1 读取某表中的数据 A=20,事务 2 也读取 A=20,事务 1 修改 A=A-1,事务 2 也修改 A=A-1,最终结果 A=19,事务 1 的修改被丢失。
  • 不可重复读(Unrepeatable read): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
  • 幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。

如何实现事务隔离

首先说读未提交,它是性能最好,也可以说它是最野蛮的方式,因为它压根儿就不加锁,所以根本谈不上什么隔离效果,可以理解为没有隔离。

再来说串行化。读的时候加共享锁,也就是其他事务可以并发读,但是不能写。写的时候加排它锁,其他事务不能并发写也不能并发读。

最后说读提交和可重复读。这两种隔离级别是比较复杂的,既要允许一定的并发,又想要兼顾的解决问题。

实现可重复读

为了实现可重复读,MySQL 采用了 MVVC (多版本并发控制,Multi Version Concurrency Control) 的方式。

我们在数据库表中看到的一行记录可能实际上有多个版本,每个版本的记录除了有数据本身外,还要有一个表示版本的字段,记为 row trx_id,而这个字段就是使其产生的事务的 id,事务 ID 记为 transaction id,它在事务开始的时候向事务系统申请,按时间先后顺序递增。

img

按照上面这张图理解,一行记录现在有 3 个版本,每一个版本都记录这使其产生的事务 ID,比如事务A的transaction id 是100,那么版本1的row trx_id 就是 100,同理版本2和版本3。

在上面介绍读提交和可重复读的时候都提到了一个词,叫做快照,学名叫做一致性视图,这也是可重复读和不可重复读的关键,可重复读是在事务开始的时候生成一个当前事务全局性的快照,而读提交则是每次执行语句的时候都重新生成一次快照。

对于一个快照来说,它能够读到那些版本数据,要遵循以下规则:

  1. 当前事务内的更新,可以读到;
  2. 版本未提交,不能读到;
  3. 版本已提交,但是却在快照创建后提交的,不能读到;
  4. 版本已提交,且是在快照创建前提交的,可以读到;

利用上面的规则,再返回去套用到读提交和可重复读的那两张图上就很清晰了。还是要强调,两者主要的区别就是在快照的创建上,可重复读仅在事务开始是创建一次,而读提交每次执行语句的时候都要重新创建一次。

并发写问题

两个事务,对同一条数据做修改。最后结果应该是哪个事务的结果呢,肯定要是时间靠后的那个对不对。并且更新之前要先读数据,这里所说的读和上面说到的读不一样,更新之前的读叫做“当前读”,总是当前版本的数据,也就是多版本中最新一次提交的那版。

假设事务A执行 update 操作, update 的时候要对所修改的行加行锁,这个行锁会在提交之后才释放。而在事务A提交之前,事务B也想 update 这行数据,于是申请行锁,但是由于已经被事务A占有,事务B是申请不到的,此时,事务B就会一直处于等待状态,直到事务A提交,事务B才能继续执行,如果事务A的时间太长,那么事务B很有可能出现超时异常。如下图所示。

img

加锁的过程要分有索引和无索引两种情况,比如下面这条语句

1
update user set age=11 where id = 1

id 是这张表的主键,是有索引的情况,那么 MySQL 直接就在索引数中找到了这行数据,然后干净利落的加上行锁就可以了。

而下面这条语句

1
update user set age=11 where age=10

表中并没有为 age 字段设置索引,所以, MySQL 无法直接定位到这行数据。那怎么办呢,当然也不是加表锁了。MySQL 会为这张表中所有行加行锁,没错,是所有行。但是呢,在加上行锁后,MySQL 会进行一遍过滤,发现不满足的行就释放锁,最终只留下符合条件的行。虽然最终只为符合条件的行加了锁,但是这一锁一释放的过程对性能也是影响极大的。所以,如果是大表的话,建议合理设计索引,如果真的出现这种情况,那很难保证并发度。

解决幻读

上面介绍可重复读的时候,那张图里标示着出现幻读的地方实际上在 MySQL 中并不会出现,MySQL 已经在可重复读隔离级别下解决了幻读的问题。

前面刚说了并发写问题的解决方式就是行锁,而解决幻读用的也是锁,叫做间隙锁,MySQL 把行锁和间隙锁合并在一起,解决了并发写和幻读的问题,这个锁叫做 Next-Key锁。

假设现在表中有两条记录,并且 age 字段已经添加了索引,两条记录 age 的值分别为 10 和 30。

img

此时,在数据库中会为索引维护一套B+树,用来快速定位行记录。B+索引树是有序的,所以会把这张表的索引分割成几个区间。

img

如图所示,分成了3 个区间,(负无穷,10]、(10,30]、(30,正无穷],在这3个区间是可以加间隙锁的。

之后,我用下面的两个事务演示一下加锁过程。

img

在事务A提交之前,事务B的插入操作只能等待,这就是间隙锁起得作用。当事务A执行update user set name='风筝2号’ where age = 10; 的时候,由于条件 where age = 10 ,数据库不仅在 age =10 的行上添加了行锁,而且在这条记录的两边,也就是(负无穷,10]、(10,30]这两个区间加了间隙锁,从而导致事务B插入操作无法完成,只能等待事务A提交。不仅插入 age = 10 的记录需要等待事务A提交,age<10、10<age<30 的记录页无法完成,而大于等于30的记录则不受影响,这足以解决幻读问题了。

这是有索引的情况,如果 age 不是索引列,那么数据库会为整个表加上间隙锁。所以,如果是没有索引的话,不管 age 是否大于等于30,都要等待事务A提交才可以成功插入。

其它

分库分表

一、单库单表存在的问题

假设你要设计一个电商网站,在一开始,User表、Order表、Product表等等各种表都在同一个数据库中,每个表都包含了大量的字段。在用户量比较少,访问量也比较少的时候,单库单表不存在问题。

但是公司可能发展的比较好,用户量开始大量增加,业务也越来越繁杂。一张表的字段可能有几十个甚至上百个,而且一张表存储的数据还很多,高达几千万数据,更难受的是这样的表还挺多。于是一个数据库的压力就太大了,一张表的压力也比较大。试想一下,我们在一张几千万数据的表中查询数据,压力本来就大,如果这张表还需要关联查询,那时间等等各个方面的压力就更大了。

(1)单库太大:数据库里面的表太多,所在服务器磁盘空间装不下,IO次数多CPU忙不过来。

(2)单表太大:一张表的字段太多,数据太多。查询起来困难。

此时就开始考虑如何解决问题了。

二、主从复制架构

单库单表下越来越不满足需求,此时我们先考虑进行读写分离。我们将数据库的写操作和读操作进行分离, 使用多个从库副本(Slaver)负责读,使用主库(Master)负责写, 从库从主库同步更新数据,保持数据一致。

这在一定程度上可以解决问题,但是用户超级多的时候,比如几个亿用户,此时写操作会越来越多,一个主库(Master)不能满足要求了,那就把主库拆分,这时候为了保证数据的一致性就要开始进行同步,此时会带来一系列问题:

(1)写操作拓展起来比较困难,因为要保证多个主库的数据一致性。

(2)复制延时:意思是同步带来的时间消耗。

(3)锁表率上升:读写分离,命中率少,锁表的概率提升。

(4)表变大,缓存率下降:此时缓存率一旦下降,带来的就是时间上的消耗。

注意,此时主从复制还是单库单表,只不过复制了很多份并进行同步。

主从复制架构随着用户量的增加、访问量的增加、数据量的增加依然会带来大量的问题,那就要考虑换一种解决思路。就是今天所讲的主题,分库分表。

三、分库分表

不管是分库还是分表,都有两种切分方式:水平切分和垂直切分。下面我们分别看看如何切分。

1、分表

(1)垂直分表

表中的字段较多,一般将不常用的、 数据较大、长度较长的拆分到“扩展表“。一般情况加表的字段可能有几百列,此时是按照字段进行数竖直切。注意垂直分是列多的情况。

(2)水平分表

单表的数据量太大。按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。这种情况是不建议使用的,因为数据量是逐渐增加的,当数据量增加到一定的程度还需要再进行切分。比较麻烦。

2、分库

(1)垂直分库

一个数据库的表太多。此时就会按照一定业务逻辑进行垂直切,比如用户相关的表放在一个数据库里,订单相关的表放在一个数据库里。注意此时不同的数据库应该存放在不同的服务器上,此时磁盘空间、内存、TPS等等都会得到解决。

(2)水平分库

水平分库理论上切分起来是比较麻烦的,它是指将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

四、分库分表之后的问题

1、联合查询困难

联合查询不仅困难,而且可以说是不可能,因为两个相关联的表可能会分布在不同的数据库,不同的服务器中。

2、需要支持事务

分库分表后,就需要支持分布式事务了。数据库本身为我们提供了事务管理功能,但是分库分表之后就不适用了。如果我们自己编程协调事务,代码方面就又开始了麻烦。

3、跨库join困难

分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表, 结果原本一次查询能够完成的业务,可能需要多次查询才能完成。 我们可以使用全局表,所有库都拷贝一份。

4、结果合并麻烦

比如我们购买了商品,订单表可能进行了拆分等等,此时结果合并就比较困难。

查找成绩第二的学生

假设有这样的一张表student:

1
2
3
4
5
6
name    mark
---------------
Alice 98
Bob 67
Eric 75
Kato 84

首先找到排名第一的学生,这一步没啥难度:

SELECT name, MAX(mark) as mark FROM student
有了最高成绩了,那么次高成绩也就很容易搞定了,也就是把所有小于最高成绩的全部拿出来,然后再在这个范围内找出最高成绩,那就是次高成绩:

1
2
3
SELECT name, MAX(mark) AS mark
FROM student
WHERE mark < (SELECT MAX(mark) FROM student);
  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!
  • Copyrights © 2022 ZHU
  • 访问人数: | 浏览次数:

请我喝杯咖啡吧~

支付宝
微信